

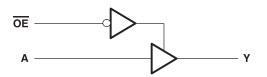
Sample &

Buv

SN74LVC1G125

SCES223S - APRIL 1999-REVISED APRIL 2014

SN74LVC1G125 Single Bus Buffer Gate With 3-State Output


1 Features

- Available in the Ultra Small 0.64-mm² Package (DPW) With 0.5-mm Pitch
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Provides Down Translation to V_{CC}
- Max t_{pd} of 3.7 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cable Modem Termination System
- High-Speed Data Acquisition and Generation
- Military: Radar and Sonar
- Motor Control: High-Voltage
- Power Line Communication Modem
- SSD: Internal or External
- Video Broadcasting and Infrastructure: Scalable Platform
- Video Broadcasting: IP-Based Multi-Format Transcoder
- Video Communications System

Simplified Schematic 4

3 Description

Tools &

Software

This bus buffer gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G125 device is a single line driver with a 3-state output. The output is disabled when the output-enable (OE) input is high.

The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

The SN74LVC1G125 device is available in a variety of packages including the ultra-small DPW package with a body size of 0.8 mm × 0.8 mm.

Device	Inform	ation ⁽¹⁾
--------	--------	----------------------

DEVICE NAME	PACKAGE	BODY SIZE
	SOT-23 (5)	2.9 mm × 1.6 mm
	SC70 (5)	2.0 mm × 1.25 mm
SN74LVC1G125	SON (6)	1.45 mm × 1.0 mm
	SON (6)	1.41 mm × 1.91 mm
	X2SON (4)	0.8 mm × 0.8 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

2

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Sim	plified Schematic1
5	Rev	ision History 2
6		Configuration and Functions
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Switching Characteristics, -40° C to 85° C, C _L = 15
		pF6
	7.7	Switching Characteristics, -40°C to 85°C 6
	7.8	Switching Characteristics, -40°C to 125°C7
	7.9	Operating Characteristics7
	7.10	Typical Characteristics7
8	Para	meter Measurement Information

5 Revision History

Changes from Revision R (April 2013) to Revision S

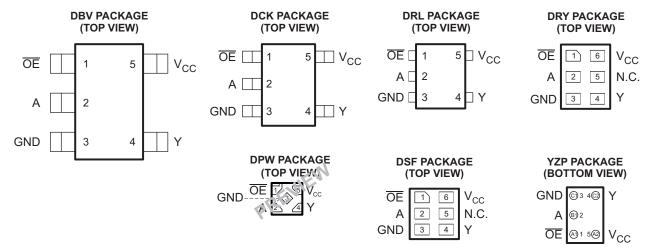
•	Added Applications.	. 1
•	Added Pin Functions table.	. 3
•	Updated Handling Ratings table.	. 4
•	Added Thermal Information table.	. 5
•	Added Typical Characteristics.	. 7
	Added Detailed Description section.	
•	Added Application and Implementation section.	11
•	Added Power Supply Recommendations section.	12
	Added Layout section.	

Changes from Revision Q (November 2012) to Revision R

•	Added Device Information table.	1
•	Moved T _{stq} to Handling Ratings table	4
	Added –40°C to 125°C Temperature range to Electrical Characteristics	
•	Added Switching Characteristics for -40°C to 125°C temperature range.	7

9	Deta	iled Description 10
	9.1	Overview 10
	9.2	Functional Block Diagram 10
	9.3	Feature Description 10
	9.4	Device Functional Modes 10
10	Арр	lication and Implementation11
	10.1	Application Information 11
	10.2	Typical Application 11
11	Pow	ver Supply Recommendations 12
12	Laye	out 12
	12.1	Layout Guidelines 12
	12.2	Layout Example 12
13	Dev	ice and Documentation Support 13
	13.1	Trademarks 13
	13.2	Electrostatic Discharge Caution 13
	13.3	Glossary 13
14	Mec	hanical, Packaging, and Orderable
		mation 13

of Contonto



Page

Page

6 Pin Configuration and Functions

N.C. – No internal connection

See mechanical drawings for dimensions.

Pin	Functions	

PIN						
NAME	DRL, DCK, DBV	DRY, DSF	DPW	YZP	DESCRIPTION	
ŌĒ	1	1	1	A1	Input	
А	2	2	2	B1	Input	
GND	3	3	3	C1	Ground	
Y	4	4	4	C2	Output	
V _{CC}	5	6	5	A2	Power pin	
NC	-	5	-	-	Not connected	

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range	Supply voltage range			
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			6.5	V
Vo	Voltage range applied to any output in the high	or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the Recommended Operating Conditions table.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range	-65	150	°C	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	M
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT		
V	Supply veltage	Operating	1.65	5.5	V		
V _{CC}	Supply voltage	Data retention only	1.5		v		
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}				
V		V_{CC} = 2.3 V to 2.7 V	1.7		V		
VIH	High-level input voltage	voltage $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			V		
		V_{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}				
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V		$0.35 \times V_{CC}$			
v		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V		
V _{IL}	Low-level input voltage	$V_{CC} = 3 V$ to 3.6 V		0.8	v		
		V_{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$			
VI	Input voltage		0	5.5	V		
Vo	Output voltage		0	V _{CC}	V		
		V _{CC} = 1.65 V		-4			
	High-level output current	V _{CC} = 2.3 V		8			
I _{OH}		<u>)</u>		–16	mA		
		$V_{CC} = 3 V$		-24			
		$V_{CC} = 4.5 V$		-32			
		V _{CC} = 1.65 V		4			
		V _{CC} = 2.3 V		8			
I _{OL}	Low-level output current	<u>)</u>		16	mA		
		$V_{CC} = 3 V$		24			
		V _{CC} = 4.5 V		32			
		V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20			
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V		
		$V_{CC} = 5 V \pm 0.5 V$		5			
T _A	Operating free-air temperature		-40	125	°C		

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

			SN74LVC1G125						
	THERMAL METRIC ⁽¹⁾	DBV	DCK	DRL	DRY	YZP	DPW	UNIT	
		5 PINS	5 PINS	5 PINS	6 PINS	5 PINS	4 PINS		
$R_{\theta J A}$	Junction-to-ambient thermal resistance	229	278	243	439	130	340		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	164	93	78	277	54	215		
$R_{\theta J B}$	Junction-to-board thermal resistance	62	65	78	271	51	294	°C/W	
ψ_{JT}	Junction-to-top characterization parameter	44	2	10	84	1	41	°C/w	
ψ_{JB}	Junction-to-board characterization parameter	62	64	77	271	50	294		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	-	-	-	250		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN74LVC1G125

SCES223S - APRIL 1999-REVISED APRIL 2014

TRUMENTS

XAS

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

			–40 C to 85 °C	;	-40 C to 1	25 °C	LINUT
PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾	MAX	ΜΙΝ ΤΥ	P ⁽¹⁾ MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} – 0.1		$V_{CC} - 0.1$		
	I _{OH} = -4 mA	1.65 V	1.2		1.2		
M	I _{OH} = -8 mA	2.3 V	1.9		1.9		V
V _{OH}	I _{OH} = -16 mA	2.1/	2.4		2.4		V
	I _{OH} = -24 mA	3 V	2.3		2.3		
	I _{OH} = -32 mA	4.5 V	3.8		3.8		
	I _{OL} = 100 μA	1.65 V to 5.5 V		0.1		0.1	
	I _{OL} = 4 mA	1.65 V		0.45		0.45	
M	I _{OL} = 8 mA	2.3 V		0.3		0.3	V
V _{OL}	I _{OL} = 16 mA	3 V		0.4		0.4	V
	I _{OL} = 24 mA	3 V		0.55		0.55	
	I _{OL} = 32 mA	4.5 V		0.55		0.55	
I _I A or OE inputs	V _I = 5.5 V or GND	0 to 5.5 V		±5		±5	μA
I _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0		±10		±10	μA
I _{OZ}	$V_0 = 0$ to 5.5 V	3.6 V		10		10	μA
I _{CC}	$V_{I} = 5.5 \text{ V or GND}, \qquad I_{O} = 0$	1.65 V to 5.5 V		10		10	μA
ΔI _{CC}	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	3 V to 5.5 V		500		500	μA
CI	$V_I = V_{CC}$ or GND	3.3 V	4		4		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

7.6 Switching Characteristics, -40° C to 85° C, C_L = 15 pF

over recommended operating free-air temperature range of -40° C to 85° C, C_L = 15 pF (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
	(INPUT)	(001201)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	1.9	6.9	0.7	4.6	0.6	3.7	0.5	3.4	ns

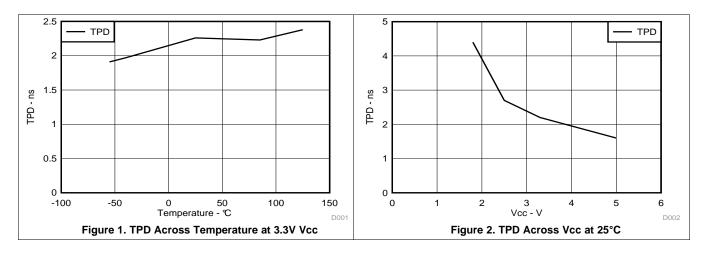
7.7 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range -40° C to 85° C, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)

PARAMETER	FROM (INPUT)	TO	V _{CC} = ± 0.1		V _{CC} = 2 ± 0.2		V _{CC} = ± 0.3		V _{CC} = ± 0.5	5 V 5 V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	2.8	9	1.2	5.5	1	4.5	1	4	ns
t _{en}	OE	Y	3.3	10.1	1.5	6.6	1	5.3	1	5	ns
t _{dis}	OE	Y	1.3	9.2	1	5	1	5	1	4.2	ns

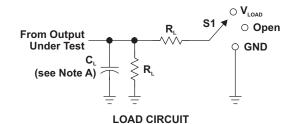
7.8 Switching Characteristics, -40°C to 125°C

over recommended operating free-air temperature range -40° C to 125° C, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)

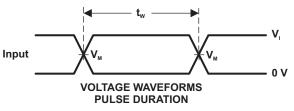

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.2		V _{CC} = ± 0.3		V _{CC} = ± 0.5		UNIT
	(INFOT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	2.8	9.3	1.2	5.8	1	4.7	1	4.2	ns
t _{en}	OE	Y	3.3	10.4	1.5	6.9	1	5.6	1	5.2	ns
t _{dis}	OE	Y	1.3	9.3	1	5.2	1	5.2	1	4.4	ns

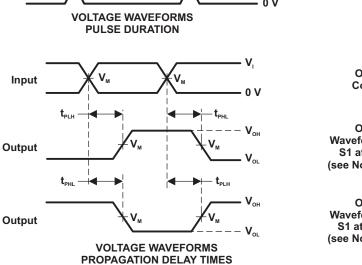
7.9 Operating Characteristics

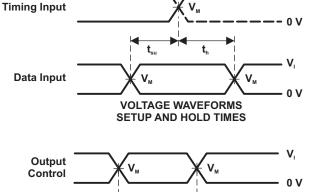
 $T_A = 25^{\circ}C$

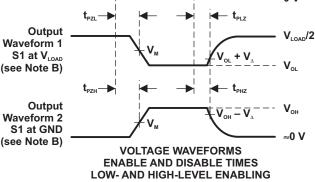

	PARAMETER		TEST	V _{CC} = 1.8 V	$V_{CC} = 2.5 V$	V_{CC} = 3.3 V	$V_{CC} = 5 V$	UNIT
			CONDITIONS	TYP	ТҮР	TYP	TYP	UNIT
0	Power dissipation	Outputs enabled	£ 40 MUZ	18	18	19	21	pF
C _{pd}			f = 10 MHZ	2	2	2	4	рг

7.10 Typical Characteristics


v


8 Parameter Measurement Information




TEST	S1
t _{PLH} /t _{PHL}	Open
t_{PLZ}/t_{PZL}	VLOAD
t _{PHZ} /t _{PZH}	GND

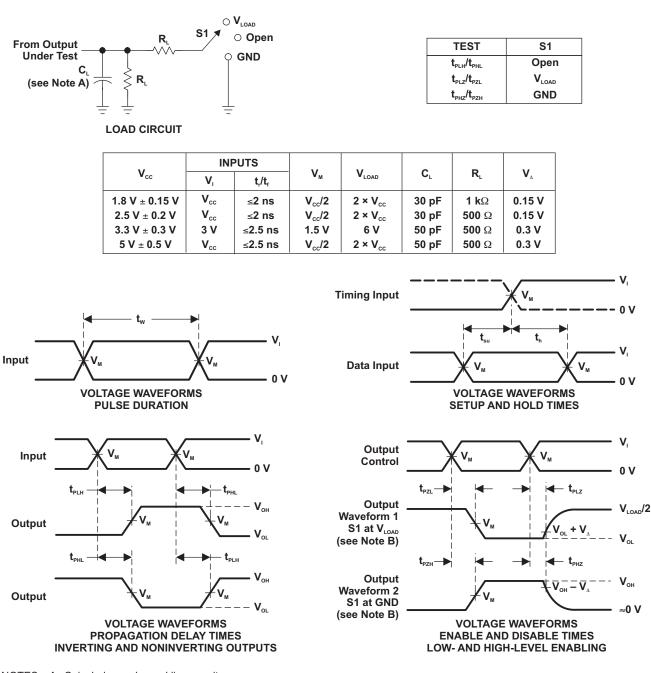
	INF	PUTS				-	
V _{cc}	V	t,/t,	V _M	VLOAD	C	R	V
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 Μ Ω	0.15 V
$2.5 V \pm 0.2 V$	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 Μ Ω	0.15 V
$3.3~V\pm0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 Μ Ω	0.3 V
$5 V \pm 0.5 V$	V_{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 Μ Ω	0.3 V

NOTES: A. C_{L} includes probe and jig capacitance.

INVERTING AND NONINVERTING OUTPUTS

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms


Submit Documentation Feedback

8

SN74LVC1G125 SCES223S - APRIL 1999-REVISED APRIL 2014

www.ti.com

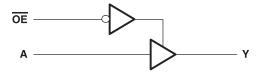
Parameter Measurement Information (continued)

NOTES: A. C_{L} includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_o = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. $t_{_{PZL}}$ and $t_{_{PZH}}$ are the same as $t_{_{en}}$.
- G. $t_{\mbox{\tiny PLH}}$ and $t_{\mbox{\tiny PHL}}$ are the same as $t_{\mbox{\tiny pd}}$
- H. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

9 Detailed Description


9.1 Overview

The SN74LVC1G125 device contains one buffer gate device with output enable control and performs the Boolean function Y = A. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The DPW package technology is a major breakthrough in IC packaging. Its tiny 0.64 mm square footprint saves significant board space over other package options while still retaining the traditional manufacturing friendly lead pitch of 0.5 mm.

9.2 Functional Block Diagram

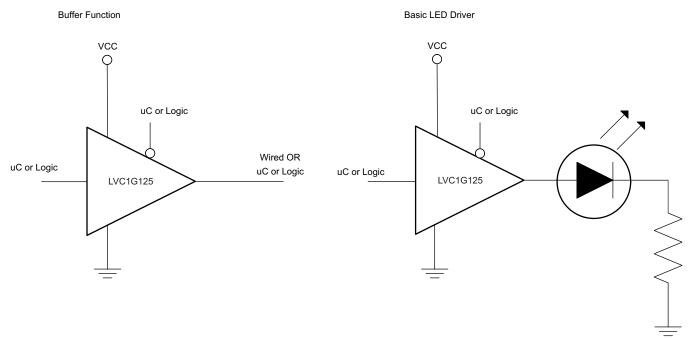
9.3 Feature Description

- Wide operating voltage range.
 - Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

9.4 Device Functional Modes

Function Table

INP	JTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
Н	Х	Z



10 Application and Implementation

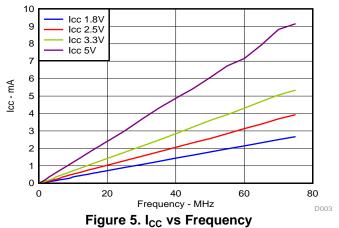
10.1 Application Information

The SN74LVC1G125 device is a high drive CMOS device that can be used as a output enabled buffer with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.


10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs. See ($\Delta t/\Delta V$) in the Recommended Operating Conditions table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V₁ max) in the Recommended Operating Conditions table at any valid V_{CC} .
- 2. Recommend Output Conditions
 - Load currents should not exceed (I_O max) per output and should not exceed (Continuous current through V_{CC} or GND) total current for the part. These limits are located in the Absolute Maximum Ratings table.
 - Outputs should not be pulled above V_{CC}.

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the Recommended Operating Conditions table.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply a $0.1-\mu$ F capacitor is recommended and if there are multiple VCC pins then a $0.01-\mu$ F or $0.022-\mu$ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. $0.1-\mu$ F and $1-\mu$ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 6 shows the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or VCC, whichever makes more sense or is more convenient.

12.2 Layout Example

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74LVC1G125DBVRE4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CUNIPDAU	Level-1-260C-UNLIM	-40 to 125	(C252 ~ C255 ~ C25F ~ C25K ~ C25R ~ C25T)	Samples
74LVC1G125DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C252 ~ C255 ~ C25F ~ C25K ~ C25R ~ C25T)	Samples
74LVC1G125DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C255 ~ C25F ~ C25K ~ C25R)	Samples
74LVC1G125DCKRE4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM5 ~ CMF ~ CMK ~ CMR ~ CMT)	Samples
74LVC1G125DCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM5 ~ CMF ~ CMK ~ CMR ~ CMT)	Samples
74LVC1G125DCKTE4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM5 ~ CMF ~ CMK ~ CMR ~ CMT)	Samples
74LVC1G125DCKTG4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM5 ~ CMF ~ CMK ~ CMR ~ CMT)	Samples
74LVC1G125DRLRG4	ACTIVE	SOT	DRL	5	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM7 ~ CMR)	Samples
74LVC1G126DBVTE4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C265 ~ C26F ~ C26K ~ C26R)	Samples
SN74LVC1G125DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C252 ~ C255 ~ C25F ~ C25K ~ C25R ~ C25T)	Samples
SN74LVC1G125DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C255 ~ C25F ~ C25K ~ C25R)	Samples
SN74LVC1G125DCKJ	ACTIVE	SC70	DCK	5	10000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CM5	Samples
SN74LVC1G125DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM5 ~ CMF ~ CMK ~ CMR ~ CMT)	Samples
SN74LVC1G125DCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM5 ~ CMF ~ CMK ~ CMR ~ CMT)	Samples
SN74LVC1G125DRLR	ACTIVE	SOT	DRL	5	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CM7 ~ CMR)	Samples
SN74LVC1G125DRY2	PREVIEW	SON	DRY	6	5000	TBD	Call TI	Call TI	-40 to 85		

10-Jun-2014

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LVC1G125DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	СМ	Samples
SN74LVC1G125DSF2	PREVIEW	SON	DSF	6	5000	TBD	Call TI	Call TI	-40 to 85		
SN74LVC1G125DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	СМ	Samples
SN74LVC1G125YZPR	ACTIVE	DSBGA	YZP	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(CM2 ~ CM7 ~ CMN)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

10-Jun-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

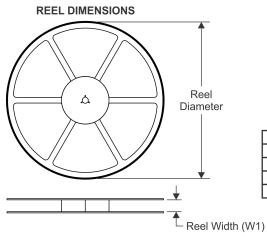
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

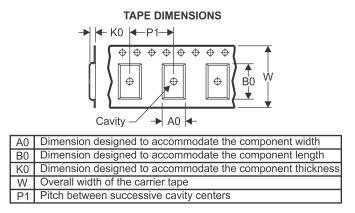
OTHER QUALIFIED VERSIONS OF SN74LVC1G125 :

Automotive: SN74LVC1G125-Q1

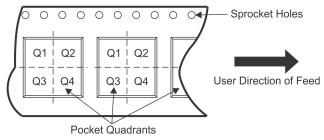
Enhanced Product: SN74LVC1G125-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

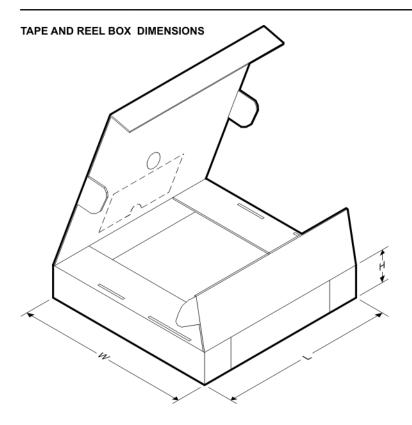

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

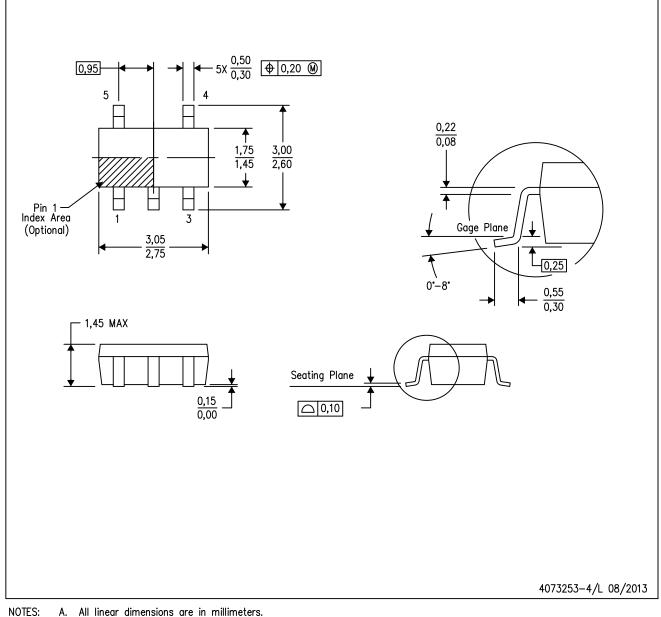
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G125DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G125DBVR	SOT-23	DBV	5	3000	180.0	9.2	3.17	3.23	1.37	4.0	8.0	Q3
SN74LVC1G125DBVR	SOT-23	DBV	5	3000	178.0	9.2	3.3	3.2	1.55	4.0	8.0	Q3
SN74LVC1G125DBVT	SOT-23	DBV	5	250	178.0	9.2	3.3	3.2	1.55	4.0	8.0	Q3
SN74LVC1G125DCKJ	SC70	DCK	5	10000	330.0	8.4	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G125DCKR	SC70	DCK	5	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1G125DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G125DCKT	SC70	DCK	5	250	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1G125DCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G125DCKT	SC70	DCK	5	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G125DRLR	SOT	DRL	5	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74LVC1G125DRLR	SOT	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74LVC1G125DRYR	SON	DRY	6	5000	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
SN74LVC1G125DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G125YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

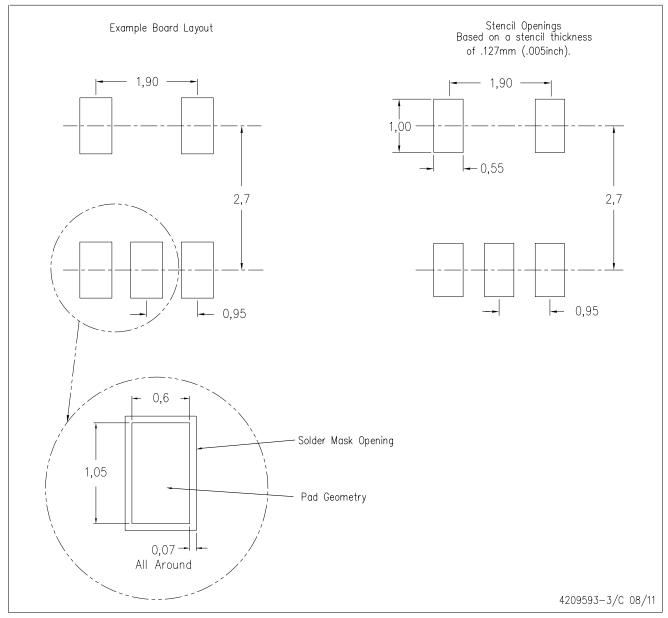
PACKAGE MATERIALS INFORMATION


9-Apr-2014

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G125DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
SN74LVC1G125DBVR	SOT-23	DBV	5	3000	205.0	200.0	33.0
SN74LVC1G125DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
SN74LVC1G125DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
SN74LVC1G125DCKJ	SC70	DCK	5	10000	338.0	343.0	30.0
SN74LVC1G125DCKR	SC70	DCK	5	3000	205.0	200.0	33.0
SN74LVC1G125DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74LVC1G125DCKT	SC70	DCK	5	250	205.0	200.0	33.0
SN74LVC1G125DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74LVC1G125DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74LVC1G125DRLR	SOT	DRL	5	4000	184.0	184.0	19.0
SN74LVC1G125DRLR	SOT	DRL	5	4000	202.0	201.0	28.0
SN74LVC1G125DRYR	SON	DRY	6	5000	203.0	203.0	35.0
SN74LVC1G125DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G125YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

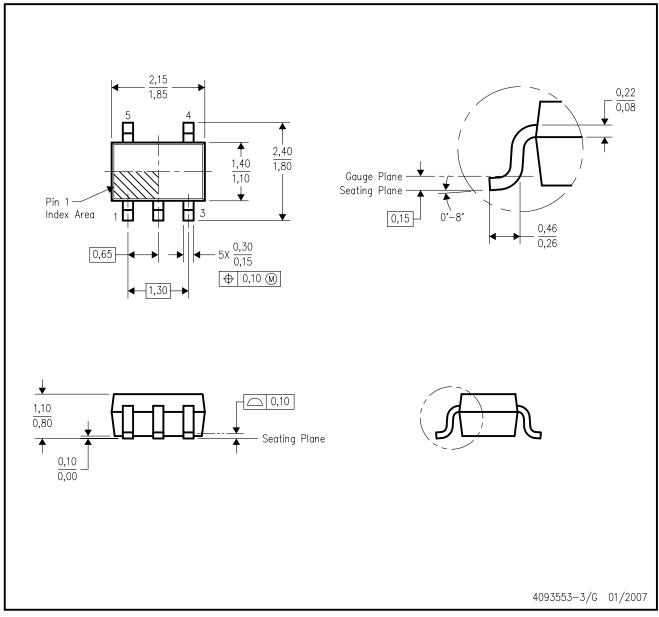


- A. All linear dimensions are in millimeters.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

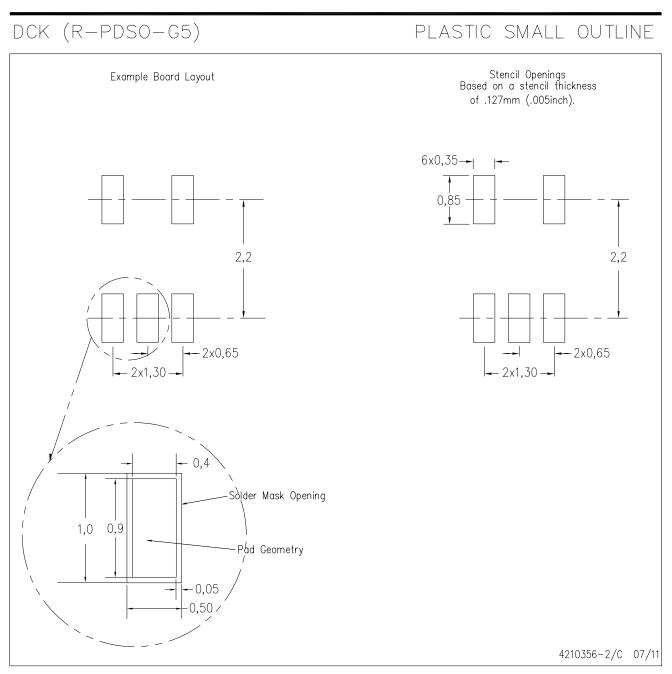
PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

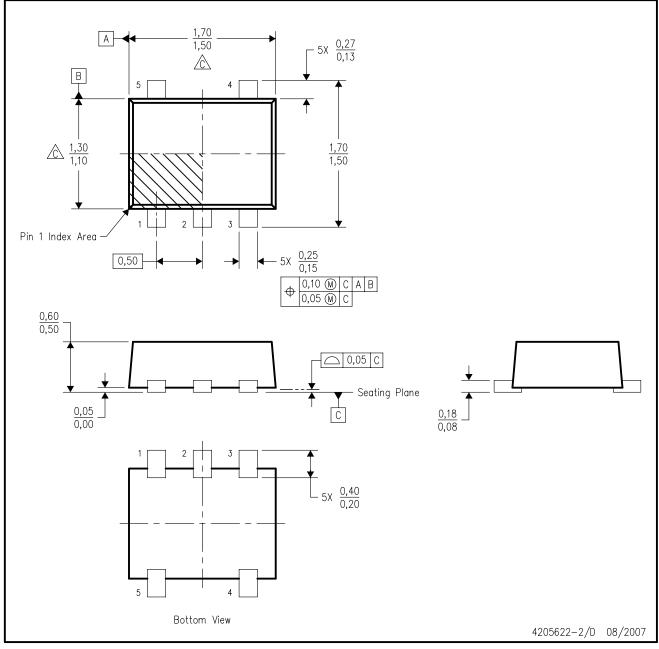
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

LAND PATTERN DATA


NOTES:

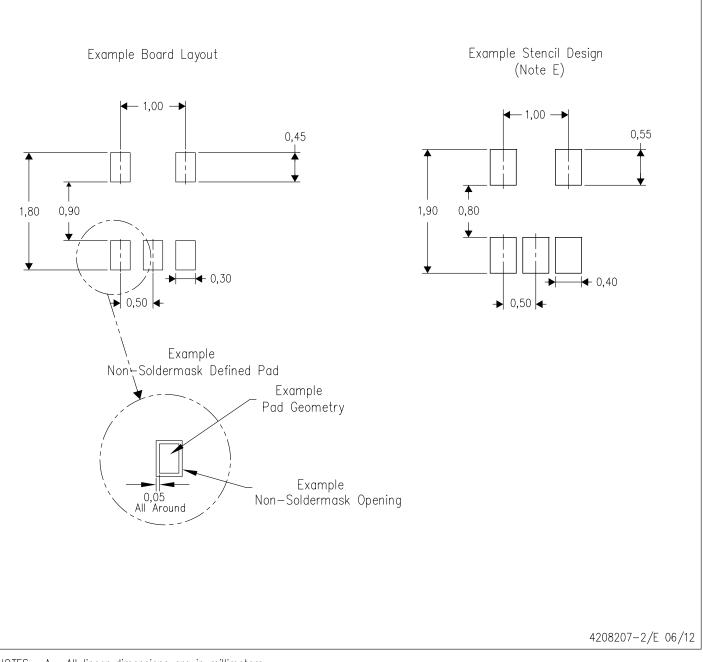
- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DRL (R-PDSO-N5)

PLASTIC SMALL OUTLINE

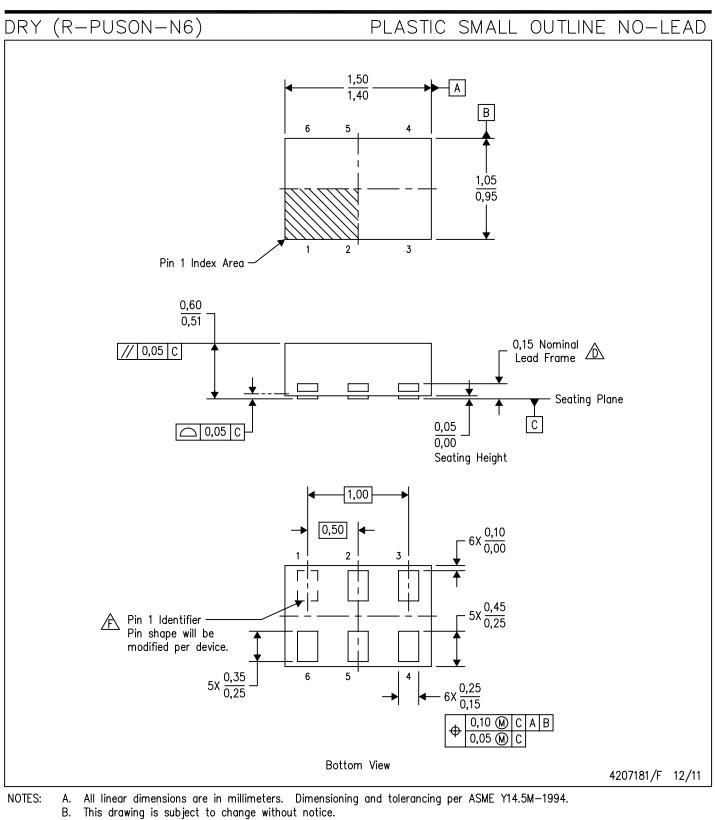
NOTES:

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α. B. This drawing is subject to change without notice.


🖄 Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.

DRL (R-PDSO-N5)

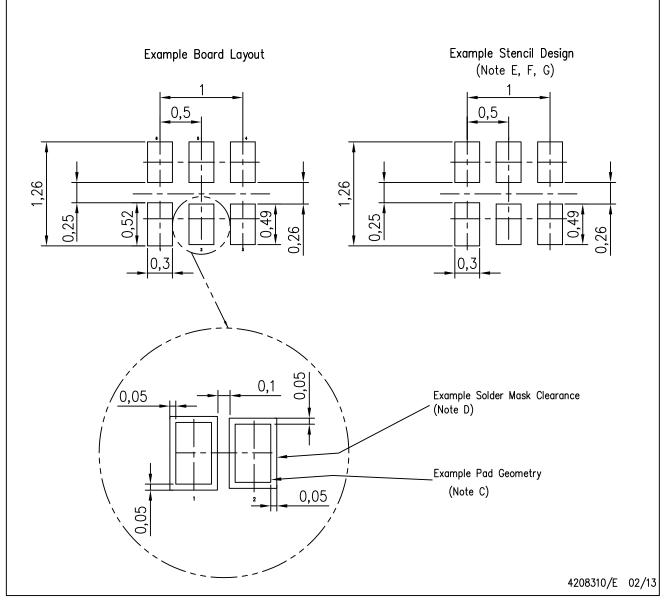
PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

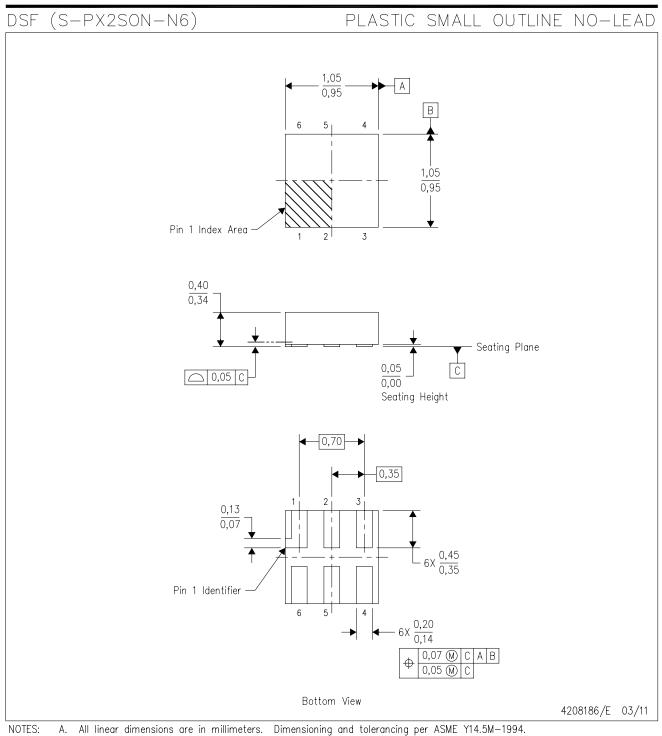
MECHANICAL DATA



- C. SON (Small Outline No-Lead) package configuration.
- Δ The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.
- E. This package complies to JEDEC MO-287 variation UFAD.
- 🖄 See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.

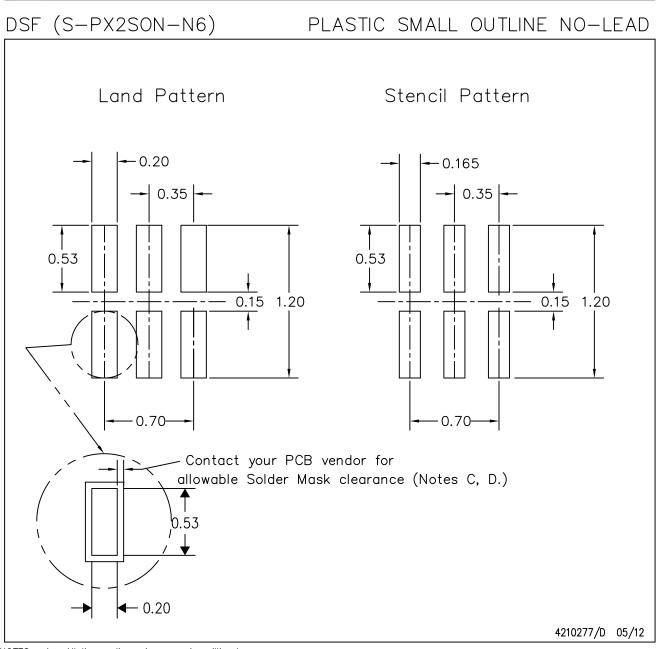
DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD



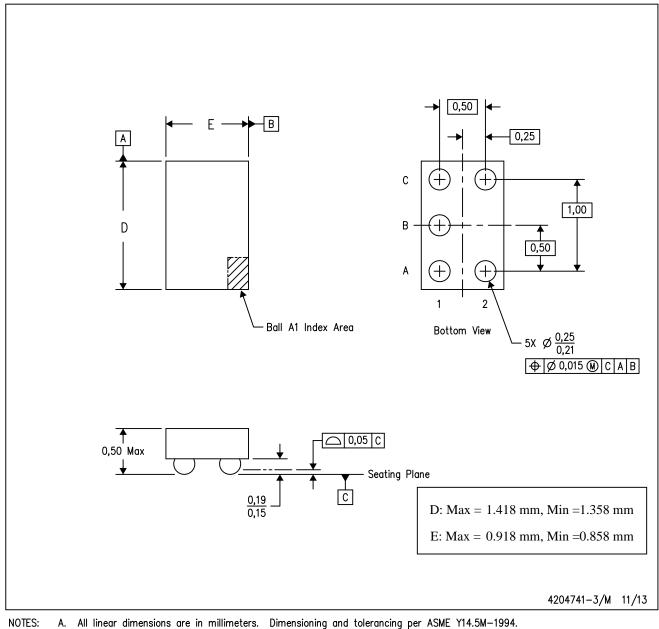
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.


TEXAS INSTRUMENTS www.ti.com

MECHANICAL DATA

- - B. This drawing is subject to change without notice.
 C. SON (Small Outline No-Lead) package configuration.
 D. This package complies to JEDEC M0-287 variation X2AAF.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.

YZP (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

- Α.
- This drawing is subject to change without notice. Β.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated